

Arduino Ethernet Device Control Example

Arduino Ethernet Device Control Example

● Use Arduino to create a web page, provide on/off
control for 16 devices via the Ethernet
– Can use for power control,
– transverter or antenna bandswitching,
– switching mic, receive audio, foot switch, CW key, etc.

among IF rigs
– turning cameras on/off or switching between cameras

Arduino Ethernet Device Control Example

● Originally needed to use MEGA due to memory
requirements:
– Used 4084 bytes of SRAM (dynamic memory)
– UNO only has 2048 bytes of SRAM

● Subsequent coding changes reduced SRAM to 1598
● Arduino MEGA and ethernet shield from eBay

– Cost $13.66 with free shipping

RESET Button

Arduino Ethernet Device Control
Live Demo

Arduino Ethernet Device Control Example:
Arduino Code

1) Include Libraries that are needed

2) Define/initialize constants and variables

3) Setup()
Define and initialize output pins

Start ethernet port and serial port

4) Loop()
Get ethernet data

Parse ethernet data

Switch relays on or off

5) Call procedure “sendReply” to:
Send relay status back to client and re-write web page at client

(Web page uses HTML buttons to send commands to Arduino to control relays and read relay status)

Arduino Ethernet Device Control Example:
Arduino Code

● For relay control uses GPIO pins 2-6, 8, A0-A5,
A8-A11

● Depending on characteristics of relay board,
may need to use reverse logic for relay control

● For this example we will NOT use reverse logic

Include Libraries

Define Variables & Constants

Ethernet.h
● Library to work with Ethernet Shield, Ethernet Shield 2, and Leonardo

Ethernet. Contains the classes:

Ethernet: members begin(), localIP(), maintain()

IPAddress: member IPAddress()

Server: members Server, EthernetServer(), begin(), available(), write(),
print(), println()

Client: members Client, EthernetClient(), if(EthernetClient), connected(),
connect(), write(), print(), println(), available(), read(), flush(), stop()

EthernetUdp members begin(), read(), write(), beginPacket(),
endPacket(), parsePacket(), available(), stop(), remoteIP(), remotePort()

Define Variables & ConstantsIPAddress(address): a
comma delimited list
representing the
address (4 bytes, ex.
192, 168, 1, 1).
Returns nothing.

EthernetServer(port):
Create a server that
listens for incoming
connections on the
specified port.
Returns nothing.

EthernetClient:
Create a client that
can connect to a
server. Returns
nothing.

Setup: Initialize GPIO Pins

Setup: Start Ethernet Port

Ethernet.begin(mac, ip):
Initializes the ethernet
library and network
settings to mac address
mac and IPAddress ip.
mac is array of 6 bytes.
ip is array of 4 bytes.
Returns nothing.EthernetServer.begin():

Start server listening for
clients

Arduino Ethernet Device Control Example:
Loop to Get Ethernet Data, Parse It, Switch Relays, Send Status

Back to HTML Client and Refresh Web Page

EthernetClient.connected(): Returns
TRUE if client connected or if client is
closed but there is still unread data;
otherwise false

EthernetServer.available(): Gets a Client that is
connected to the server and has data available for
reading. Returns a Client object, or false if no client has
data available

EthernetClient.read(): Reads the next byte received
from the server the client is connected to. Returns the
next byte, or -1 if none available

Arduino String class
● Members include:

charAt

compareTo

concat

c_str

endsWith

equals

equalsIgnoreCase

getBytes

indexOf

lastIndexOf

length

remove

replace

reserve

setCharAt

startsWith

substring

toCharArray

toInt

toFloat

toLowerCase

toUpperCase

trim

Arduino Ethernet Device Control Example:
Loop to Get Ethernet Data, Parse It, Switch Relays, Send Status

Back to HTML Client and Refresh Web Page

String.indexOf(val) Locates a character or
String val within another String. Returns the
index (position) of val within the String, or -1 if
not found. Indexing starts with 0.

String.substring(val1,
val2) Gets a substring
of a String, starting with
val1 and ending before
val2. The starting index
val1 is inclusive (the
corresponding character
is included in the
substring), but the
optional ending index
val2 is exclusive.
Returns the substring.

Where did this arcane client/server
stuff come from?

● http://www.instructables.com/id/Arduino-Ethernet-Shield-Tutorial/
has an example that turns LED on and off via the ethernet...a
perfect beginning for this project!

● Original Arduino code is here:
http://w3sz.com/EthernetLED_Switch.ino

● Remember, if you start by stealing someone else’s code, you will
progress much more quickly

http://www.instructables.com/id/Arduino-Ethernet-Shield-Tutorial/
http://w3sz.com/EthernetLED_Switch.ino

Switch
the
relays

What about
SendReply?

SendReply() Function
● This routine reads the GPIO pin values and

reports them both through the serial port and to
the HTML client

● It also creates the web page for the HTML
client, including the HTML buttons on the web
page and defines what is sent to the Arduino
when each button is clicked on the web page

F macro tells the program to
store the string in Flash
memory rather than SRAM

EthernetClient.println(data): Prints
data, followed by a carriage return
(‘\r’) and newline (‘\n’), to the
server a client is connected to.
Returns number of bytes written.
data can be of type char, byte, int,
long, or string.

EthernetClient.stop(): Disconnect
from the server. Returns nothing.

Arduino Ethernet Device Control Example:
Arduino Code

1) Included Libraries that are needed

2) Defined/initialized constants and variables

3) Setup()
Defined and initialized output pins

Started ethernet port and serial port

4) Loop()
Got ethernet data

Parsed ethernet data

Switched relays on or off

5) Called procedure “sendReply” to:
Send relay status back to client and re-write web page at client

(Web page used HTML buttons to send commands to Arduino to control relays and read relay status)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

