

Arduino N1MM Transverter Bandswitch

Arduino N1MM Transverter
Bandswitch

● Switch transverter band when band changed in N1MM
– Separate relay for each band, using Sainsmart Relay Board

● Cover 50 MHz thru 76 GHz
● Use USB serial port for communications between

N1MM and the Arduino
– Use OTRSP (Open Two Radio Switching Protocol)

● Developed by Paul Young, K1XM

Arduino N1MM Transverter
Bandswitch

● 50 MHz-76 GHz → 13 bands → 13 GPIO pins
● Uses 19% (6366 of 32256 available bytes for Uno) of

program storage space <Flash>)
● Uses 24% (511 of 2048 available bytes for Uno) of

SRAM (static random access memory), where
variables are placed

● UNO has sufficient GPIO pins and memory

SainSmart 16 Channel 12V Relay Module

OTRSP
● For this project, need only one-way communication from

N1MM to Arduino
● Need only to send N1MM-Radio-Number (n) and Band (bb)
● In OTRSP-speak, this is sent as “AUXnbb”

– n is either “1” or “2” and bb is 00 – 12
– bb is defined via N1MM Configure page
– e.g for Radio 1 and 222 MHz, “AUX102” will be sent by N1MM

Demo of
Arduino N1MM Transverter

Bandswitch

Programming Steps - General
1) Include libraries containing classes with external functions (Optional)

2) Define variables and constants (Optional)

3) Setup ()
 Define and initialize GPIO pins / Analog I/O pins

 Define, start, serial port(s), Ethernet port(s)

4) Loop()
 Receive input from ports / GPIO pins / Analog pins

 Parse / process data to extract desired information

 Use information derived from data to perform desired task (e.g. switch GPIO pins) or to send
information to client computer

5) From within Loop(), call other functions() as needed (Optional)

Arduino Example
Include Libraries

Preprocessor directive to include
string.h library

Arduino Example
Define Variables and Constants

Arduino Example
Define Variables and Constants

Arduino Example
Setup (): Define and Initialize GPIO pins

Arduino Example
Setup (): Define, Start, Flush Serial Port

Serial class is part of the Arduino
Language

● No need to add library. Members include:

If(Serial)

available

availableForWrite

begin

end

find

findUntil

flush

parseFloat

parseInt

peek

print

println

read

readBytes

readBytesUntil

setTimeout

write

serialEvent

Arduino Example
Setup (): Define, Start, Flush Serial Port

Serial.begin(var1, var2) var1 sets the data rate in bits per second. An
optional second argument var2 configures the data, parity, and stop bits. The
default is 8 data bits, no parity, one stop bit. Returns nothing.

Arduino Example
Setup (): Define, Start, Flush Serial Port

Arduino Example
Setup (): Define, Start, Flush Serial Port

Serial.println(data) Prints data to the serial port as human-readable ASCII
text followed by a carriage return character (ASCII 13, or '\r') and a newline
character (ASCII 10, or '\n'). Returns the number of bytes written.

Arduino Example
Setup (): Define, Start, Flush Serial Port

Arduino Example
Setup (): Define, Start, Flush Serial Port

Serial.flush() Waits for the transmission of outgoing serial data to complete.
Returns nothing.

Arduino Example
Loop(): Receive Input from Serial Port

Parse Data to Extract Desired Information
Use Extracted Data to Bandswitch Transverters

Call Other Functions as Needed

● Special built-in function called serialEvent() runs at the
end of each Loop() if there is new serial data received

● Lets look at this function before examining Loop() itself

Arduino Example
Call Other Functions as Needed
Receive Input from Serial Port

Arduino Example
Call Other Functions as Needed
Receive Input from Serial Port

Serial.available() Gets the number of bytes (characters) available for
reading from the serial port. This is data that’s already arrived and stored in
the serial receive buffer (which holds 64 bytes). Returns the number of bytes
available to read.

Arduino Example
Call Other Functions as Needed
Receive Input from Serial Port

Arduino Example
Call Other Functions as Needed
Receive Input from Serial Port

Serial.read() Reads incoming serial data. Returns the first byte of incoming
serial data available (or -1 if no data is available)

cast (char)

Arduino Example
Call Other Functions as Needed
Receive Input from Serial Port

commandInputString =
commandInputString +
commandInChar;

Carriage return is ‘\r’

Arduino Example
Loop(): Receive Input from Serial Port
Parse Data to Extract Desired Information

Use Extracted Data to Bandswitch Transverters

Serial.print(data)
Prints data to the
serial port as human-
readable ASCII text.
Returns the number of
bytes written.

Arduino Example
Loop(): Receive Input from Serial Port

Parse Data to Extract Desired Information
Use Extracted Data to Bandswitch Transverters

Arduino String class
● Members include:

charAt

compareTo

concat

c_str

endsWith

equals

equalsIgnoreCase

getBytes

indexOf

lastIndexOf

length

remove

replace

reserve

setCharAt

startsWith

substring

toCharArray

toInt

toFloat

toLowerCase

toUpperCase

trim

Arduino Example
Loop(): Receive Input from Serial Port

Parse Data to Extract Desired Information
Use Extracted Data to Bandswitch Transverters

String.indexOf(val) Locates a character or
String val within another String. Returns the
index (position) of val within the String, or -1 if
val is not found. Position numbering starts
with 0.

Arduino Example
Loop(): Receive Input from Serial Port

Parse Data to Extract Desired Information
Use Extracted Data to Bandswitch Transverters

Arduino Example
Loop(): Receive Input from Serial Port

Parse Data to Extract Desired Information
Use Extracted Data to Bandswitch Transverters

Arduino Example
Loop(): Receive Input from Serial Port

Parse Data to Extract Desired Information
Use Extracted Data to Bandswitch Transverters

Programming Steps
1) Included libraries containing classes with external functions

2) Defined variables and constants

3) Setup ()
 Defined and initialized GPIO pins

 Defined, started serial port

4) Loop()
 Received input from serial port

 Parsed / processed data to extract desired information

 Used information derived from data to perform desired task (switch GPIO pins)

5) Called serialEvent() at end of every loop cycle

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

