

Learning the (other) Code

Learning the (other) Code
● The Arduino Language is a subset of C++

– C++ and C share many features, so if you only know
C, you will still feel at home

● There are Arduino-specific Libraries for extending
the Language for specific tasks:
– Ethernet, WiFi, I2C, SPI, Stepper, Servo, SD,

LiquidCrystal, Debounce, FFT,etc

Learning the (other) Code:
Online references

● The Arduino Language reference:
– https://www.arduino.cc/en/Reference/HomePage

● Arduino-specific Libraries:
– https://www.arduino.cc/en/Reference/Libraries
– Let’s take a look at the Libraries (if we have wifi)!

https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/Libraries

C++ Beginners’ Trap
● C++ is case sensitive

RFpower is NOT the same as rfpower is not the
same as rfPower

● camelCase is usually used for functions and
variables

● PascalCase is usually used for classes

Programming – A Few Terms
● Comment

– Statement that is used to make a program easier to
understand, and which is ignored by the computer

● Comments on a single line start with // in C++
// This is a comment in C++
int A = 5; //This line contains a comment too!

● Multi-line comments are bracketed by /* and */
/* This is what a multi-line
 comment in C++ looks like */

Programming – A Few Terms
● Variable

– a memory location paired with an associated symbolic name
(an identifier), which contains some known or unknown
quantity of information referred to as a value that can be
altered during program execution.

● double myAirspeed = 588.725;

● Constant
– a value that cannot be altered by the program during normal

execution
● const double MyPi = 3.14159;

Programming – A Few Terms
● Data type

– Specifies the type of value for a variable or constant
● String

– “This is a string”

● char(acter)
– ‘g’

● int(eger)
– 3

● bool(ean)
– true false 0 (zero) evaluates to false non-zero evaluates to true

● double or float (identical on the 8 bit boards; 8 vs 4 byte on Due)
– 3.78943236593

Programming – A Few Terms
● Array

– An array is a fixed-size sequential collection of elements of the same
data type.

– Ways to declare an array:
type arrayName[arraySize];

type arrayName[arraySize] = {value, value, value, value};
● Example:

int wattsOut[5] = {10, 20, 30, 40, 50};

● First element of an array: arrayName[0];
wattsOut[0] = 10;

wattsOut[3] = 40;

Programming – A Few Terms

● Statement
– the smallest standalone element of a programming

language that expresses some action to be carried
out. In C++, every statement ends with a semi-
colon

● X = 1;

Programming – A Few Terms
● Function

– a named section of a program that performs a specific task and returns a value
● int X (int y)

{
int x = y + 5;

return x;

}

– “X” would be used in this manner:
● int A = X(7);

– Would give A = 12

– Every function has a type and a name; arguments are optional
● A function’s “type” represents the data type that it returns when called

Programming – A Few Terms
● Procedure

– a named section of a program that performs a specific task (such as I/O) but does not return a value.
Example:

void calcA (int y)

{
A = y + 5;

}
(where “A” is declared elsewhere in the program)

– “calcA” would be used in this manner:
int A = 0;

calcA(7);

Serial.print(A);
– Would print “12” to the serial port

– A procedure’s type is always “void”
– Another example:

Serial.begin(9600); ARDUINO OFFICIALLY CALLS THIS A “FUNCTION”; SLOPPY SEMANTICS!!

Programming – A Few Terms
● Class

– A type or data structure declared with the keyword class that has
data and functions as its members.

– Instances of a class data type are known as objects.
– Arduino Class Examples: Serial, String, LiquidCrystal, Stepper,

Ethernet, EthernetUDP
– Creating an instance of a class is called instantiation
– A class member is accessed using ClassName.member syntax

Programming – A Few Terms
● Library

– a collection of precompiled classes containing
functions and procedures that a program can use to
give it increased functionality

● Ethernet.h
● https://www.arduino.cc/en/Reference/Libraries

https://www.arduino.cc/en/Reference/Libraries

Ethernet.h
● Library for Ethernet Shield, Ethernet Shield 2, and Leonardo Ethernet.

Contains the classes:

Ethernet: members begin(), localIP(), maintain()

IPAddress: member IPAddress()

Server: members Server, EthernetServer(), begin(), available(), write(),
print(), println()

Client: members Client, EthernetClient(), if(EthernetClient), connected(),
connect(), write(), print(), println(), available(), read(), flush(), stop()

EthernetUdp members begin(), read(), write(), beginPacket(),
endPacket(), parsePacket(), available(), stop(), remoteIP(), remotePort()

Programming – A Few Terms
● Macro

– A macro is a preprocessing directive defined by the #define directive:
#define macro_name macro_body

● e.g.
#define X 10

● Will result in “X” being replaced by “10” everywhere in the code after the #define
directive

– Both #define and #include are preprocessor directives. They change
the source code BEFORE compilation. Other commonly used
preprocessor directives include: #ifndef and #endif

● Preprocessor directives are NOT program statements and they do NOT end
with a semicolon.

Programming – A Few Terms
● GPIO pin

– generic pin on an integrated circuit or computer board whose
behavior—including whether it is an input or output pin—is
controllable by the user at run time

● GPIO.setup(PIN50, GPIO.OUT);

● Analog pin
– Pin that can read (or sometimes write) analog voltages within a

defined range with step size determined by the bit size of the
analog-to-digital (read) or digital-to-analog (write) converter

● pinMode(A0, INPUT);

Programming – A Few Terms
● Operator

– A symbol that tells the compiler to perform specific
mathematical or logical manipulations

● Arithmetic
● Relational
● Logical
● Bitwise
● Assignment
● Miscellaneous

Operators
● Arithmetic

+ (plus) - (minus) * (multiply) / (divide) % (modulus, or remainder)

++ (increases integer value by one) – – (decreases integer value by one)

● Relational
== (is equal to) != (is not equal to) > (is greater than)

< (is less than) >= (is greater than or equal to)

<= (is less than or equal to)

● Logical
&& (and) || (or) ! (not)

Operators
● Bitwise

& (and) | (or) ^ (exclusive or) << (shift left) >> (shift right)

~ (not)

● Assignment
= (equals)

+= (adds right operand to the left operand and assigns the result to left operand)

-= (subtracts right operand from the left operand and assigns the result to left operand)

*= (multiplies right operand by the left operand and assigns the result to left operand)

/= (divides left operand by the right operand and assigns the result to the left operand)

● Miscellaneous
sizeof() - returns the size (in bytes) of the argument as integer

(type) cast - converts one data type to another (see next slide)

Cast operator ()
● Cast forces one data type to be converted into another
● Example:

double a = 21.123456;

int c;

c = (int) a;

print c;
– Will print the result:

21

Extra Credit – Bitwise Operator
Example

/* C Program to demonstrate use of bitwise operators */

#include<stdio.h>

int main()

{

 unsigned char a = 5, b = 9; // a = 5(00000101), b = 9(00001001)

 printf("a = %d, b = %d\n", a, b);

 printf("a&b = %d\n", a&b); // The result is 00000001

 printf("a|b = %d\n", a|b); // The result is 00001101

 printf("a^b = %d\n", a^b); // The result is 00001100

 printf("~a = %d\n", a = ~a); // The result is 11111010

 printf("b<<1 = %d\n", b<<1); // The result is 00010010

 printf("b>>1 = %d\n", b>>1); // The result is 00000100

 return 0;

}

Output:

a = 5, b = 9

a&b = 1

a|b = 13

a^b = 12

~a = 250

b<<1 = 18

b>>1 = 4
From: https://www.geeksforgeeks.org/interesting-facts-
bitwise-operators-c/

Programming – A Few Terms
● Decision Statement

– Statement that causes various courses of action to be taken depending
on certain conditions (a form of “flow control”)

– if, else if, else
● if
● if...else
● if...else if
● if...else if...else
● if...else if...else if
● if...else if...else if...else etc.

– switch

if/else Statement

 if / else if / else Example

if (band == 50)
{relay50Pin = On;

relay144Pin = Off;}

else if (band ==144)
{relay50Pin = Off;

relay144Pin = On;}

else
{relay50Pin = Off;

relay144Pin = Off;}

switch : an alternative to
if / else if / else if / else if …. / else

FOR
INTEGRAL and
ENUMERATED
TYPES ONLY
e.g. integers,
characters,
booleans

Switch Example

switch (band){
 case 50: {
 relay50Pin = On;
 relay144Pin = Off;
 break; }
 case 144: {
 relay50Pin = Off;
 relay144Pin = On;
 break; }
 default: {
 relay50Pin = Off;
 relay144Pin = Off; }}

Another Form of Flow Control
”while” Loop

while(condition){

statements

}

while(condition){
statements
}

var=0;
while(var < 200){
var++;
print var;
}

Prints integers from 1 to 200

Another form of flow control
the “for” loop

● Used for code that needs to execute repetitively:

for(init; condition; increment) {

statements; }

init step is executed first, and only once

condition evaluated; if true, statements in the body of the loop are executed. If false, body
of loop is not executed and control jumps to next statement after the loop

after the body of the loop executes, flow of control jumps to increment statement and
increment is performed

condition is again evaluated. When condition is false, loop terminates

“for” loop: example

● Used for code that needs to execute repetitively:

for(init; condition; increment) {

statements; }

for(i=0; i<4; i++) {

 print i; }

Output:
0
1
2
3

Curly braces
{ }

● Are used to group a set of statements; always
come in pairs

● Be careful with them; misplaced curly braces
are a major source of bugs!

Curly brace madness
if (band == 50)

{relay50Pin = On;

relay144Pin = Off;}

else if (band ==144)

{relay50Pin = Off;

relay144Pin = On;}

else

{relay50Pin = Off;

relay144Pin = Off;}

if (band == 50)

{relay50Pin = On;

relay144Pin = Off;}

else if (band ==144)

{relay50Pin = Off;

relay144Pin = On;}

else

{relay50Pin = Off;}

relay144Pin = Off;

Correct

Incorrect

Programming Steps –
Getting Started

Programming Steps - General
1) Include libraries containing classes with external functions (Optional)

2) Define variables and constants (Optional)

3) Setup ()
 Define and initialize GPIO pins / Analog I/O pins

 Define, start, serial port(s), Ethernet port(s)

4) Loop()
 Receive input from ports / GPIO pins / Analog pins

 Parse / process data to extract desired information

 Use information derived from data to perform desired task (e.g. switch GPIO pins) or to send
information to client computer

5) From within Loop(), call other functions() as needed (Optional)

A Simple Program
Blink

A Simple Program
Live Demo

Blink

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

