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Using Software DSP Solutions to Enhance Weak Signal Communications: 
A User’s Discussion of Linrad, SM5BSZ’s Linux PC Radio 
 
Roger Rehr, W3SZ 
 
Abstract.  Linrad, a Software Defined Radio created by Leif Asbrink, SM5BSZ, has 
proven to be an extremely effective tool for weak signal communications.  Its noise 
reduction and weak signal detection abilities are unparalleled, and it provides a 
comprehensive display of signal information that is vastly superior to all other 
alternatives.  This article will provide a brief overview of DSP processing, and then 
present an introduction to this revolutionary ‘receiver in software’ which has replaced, 
for weak signal work, the conventional receivers at the author’s station. 

 
I. Overview  
 

The use of "Digital Signal Processing" or DSP in wireless communications is increasing 
exponentially due to the burgeoning availability of increasingly inexpensive and capable 
digital signal processing hardware.  The use of digital techniques is moving closer and 
closer to the antenna.  Digital signal processing involves first the conversion of an analog 
signal to digital form and then the numerical manipulation of the resultant digital signal 
in some fashion to produce a desired result.   As the digital hardware available becomes 
more sophisticated and cost-efficient, more and more functions that were previously done 
using analog circuits are being performed with digital hardware.  In particular, the use of 
DSP techniques in amateur radio is rapidly expanding, both in terms of the use of DSP in 
commercial transceivers and receivers and in terms of homebrew hardware and software 
construction projects available to and undertaken by hams. The ARRL Handbook since at 
least its 2000 edition has had an excellent basic introductory chapter on DSP1.    ARRL 
publications such as QST2 and especially QEX34567 have featured excellent articles on the 
subject during the past 2 years.  A wealth of information is available on the Internet8910.  
A list of print and Internet resources on DSP is found at the end of this article.  This 
article will provide a brief overview of DSP techniques in Amateur Radio, and move 
quickly to discuss the excellent Software Defined Radio11 known as Linrad (short for 
Linux Radio), created by Leif Asbrink, SM5BSZ.  The discussion will be from the 
viewpoint of a user of the software who is avidly interested in weak signal 
communications, but not particularly proficient in computer programming, digital theory, 
or RF electronics.   The goal of the article is to help the reader understand what Linrad 
can do, and to provide a guide to successfully implementing it for aiding in weak signal 
communications. 

   
II. Why DSP? 
 

I began using DSP techniques because of my interest in doing 144 MHz EME in a very 
noisy RF environment, and later found that DSP was also very helpful in terrestrial weak 
signal VHF, UHF, and microwave communications.  EME is truly "weak signal" 
communications.  The "typical" round-trip path loss when the moon is at perigee (closest 
to the earth) is approximately 251.5 dB at 144 MHz.  If you consider a system where 
maximum legal power is present at the antenna, the system starts with 31.76 dBW 
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transmit power.  If the antenna array has 19 dB gain, then the signal leaving the antenna 
will be 51 dBW.  The signal arriving back from the moon at the receiving antenna will be 
on the order of -200 dBW.  If the receiving antenna also has 19 dB gain, the signal 
arriving at the preamplifier on the mast will be -181 dBW.  If the antenna has a noise 
temperature of 200 K, the preamplifier has a noise figure of 0.5 dB, the subsequent 144 to 
28 MHz transverter a noise figure of 1 dB, and each has a gain of 20 dB then the receive 
system will have a noise floor of -187 dBW  if a bandwidth of 250 Hz is used. (As long 
as the 28 MHz IF is reasonably state of the art, its noise figure is irrelevant as it is divided 
by the product of the gains of the preamplifier and the transverter when figuring its 
equivalent noise temperature).  Thus the receive system will detect the signal as (-
181+187) or 6 dB above the noise.  Throw in 1-2 dB for cable loss, and 1 or 2 dB for 
excess sky noise and excess path attenuation and you may be just 2-4 dB above the noise. 
 The signal-to-noise ratios commonly found for EME communications create a real need 
for tools such as DSP that can pull very weak signals out of the mud to permit the 
completion of valid two-way contacts. 

 
III. DSP Toolkit 

 The role of DSP techniques in EME and other weak signal work is of course to provide 
substantial improvement in signal reception and decoding (interpretation).  There are two 
approaches to using DSP techniques to increase the success potential of signal reception. 
The first and more obvious approach is to use DSP techniques to improve the human, 
aural detection of CW signals. There has been much work in this arena over many years. 
The second approach is to use DSP methods to provide for automated message detection 
and decoding of signals that may not even be audible with standard audio processing 
techniques. These methods have only very recently become widely available to amateur 
radio operators, and are exemplified by the modes PUA43 developed by Bob Larkin, 
W7PUA2, and JT4412, created by Joe Taylor, K1JT.   Successfully using either approach 
for weak signal VHF/UHF/Microwave work requires considerable skill on the part of the 
operator.  Both forms of ‘automated’ communication have been accepted by the ARRL as 
meeting the requirements for their Awards Programs (Reference:  Personal 
Communication to W3SZ, by email, Spring 2002).  Thus which technique to use for 
weak signal communications is a matter of personal preference for each operator.  Like 
other experienced EME operators, I have found that programs such as PUA43 and JT44, 
both examples of the computer decoding paradigm, could at times receive complete and 
accurate information when I could not hear the other station, and so at least under some 
circumstances, the human interface represents a weak link when compared with 
automated decoding by the computer.  

When one is using DSP techniques to improve the accuracy of human decoding of the 
message, there are several features that we would like to have in our “ideal” DSP 
program.  Specifically, the ideal program should provide: 
 
 1. A waterfall display with adjustments possible for color gain, baseline level, visualized 
bandwidth, frequency bin size, and number of averages per displayed line.  A waterfall 
display is basically a way of displaying the time course of signals that have been received 
by having one axis (usually the horizontal) represent frequency, the second axis (usually 
vertical) represent time, and then using color to display signal strength. A properly 
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designed waterfall used in the correct way will allow one to visually detect signals that 
are considerably below the audible threshold.  This is possible by virtue of both signal 
averaging and by the use of very narrow frequency bins, both of which increase signal-to-
noise ratio.  Signal averaging increases the signal-to-noise ratio by the square root of ‘n’, 
where ‘n’ is the number of sign als averaged.  This means that averaging two signals 
increases the signal-to-noise ratio by the square root of 2, or 1.414.  Expressed in dB, this 
would be an improvement of 1.5 dB.  Narrowing the bin frequency range increases the 
signal-to-noise ratio by ‘n’ where ‘n’ is the fractional bandwidth reduction.  For example, 
decreasing the bandwidth to ½ of its previous width doubles the signal-to-noise ratio, or 
increases it by 3 db, all other things being equal.  However, because reducing the 
bandwidth by 50% doubles the time required per acquisition, a net gain of 1.5 dB is 
realized with this bandwidth reduction. An example of an excellent waterfall display is 
shown in Figure 1.  This illustration is a screen grab from Linrad which displays here a 
90 kHz portion of the 2 meter band as received at SM5FRH during the ARRL 2001 EME 
Contest. You can see many vertical dashed lines; each one of these is an EME station’s 
signal.  Although here it is reproduced in black and white, the display looks much better 
in color as can be seen on my website.  All of the waterfall display parameters are easily 
adjustable in Linrad. 
 
2. A spectral display with the following parameters being adjustable: vertical gain, 
baseline level, visualized frequency range, frequency bin size, and number of averages 
per displayed spectrum.  A spectrum is just the familiar plot of signal intensity vs 
frequency for a single point in time.  A spectrum is shown just below the waterfall 
display in the Linrad image of Figure 1.  Like the waterfall’s pa rameters, the spectral 
display parameters are easily adjustable in Linrad. 
 
 3. DSP audio processing with 
   a. variable bandwidth filtering with adjustable pitch 
   b. a noise reduction algorithm or noise blanker 
   c. binaural receive capability 
   d. spur removal designed so that it is useful when in CW mode. 
 
The bandwidth filters that can be created with DSP have the advantages of (1) being 
immune to the problem of aging-induced changes in component values producing altered 
filter parameters with time, (2) being very flexible (i.e. easily altered by the user as 
requirements change), and (3) the fact that they can be designed to much more stringent 
specifications than is generally practical with analog components.  They very much lend 
themselves to experimentation, as trying a different configuration often just involves just 
changing a parameter value in software.  With Linrad adjusting the bandwidth filter 
involves just clicking on the graphic filter passband display and pulling the filter window 
so that it is wider or narrower, and steeper or gentler in its slope.  Nothing could be 
easier! 
 
Binaural receiving methods delay the arrival of part or all of the signal going to one ear. 
 This 'pseudo-stereo' sometimes makes the desired signal seem to pop out of the 
background.  Linrad offers four different receiving modes:  normal, binaural, and two 
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different ‘coherent’ receiving modes. These modes are selectable with the click of a 
mouse.   
 
Digital notch filters can be made much sharper and deeper than analog notches.  Linrad 
will remove many spurs, by pointing and clicking on each of them with the mouse.  But 
as a matter of practicality with Linrad, run with a 20 Hz filter (as I generally use it), there 
is only one signal in the audio pass band and usually no need for a notch filter.  The spur 
removal algorithm is also useful in cleaning up the waterfall so that there are fewer 
birdies to hide the desired signals. 
 
When the final link in the receive chain is not human hearing and interpretation but 
computer analysis, the list of desired software characteristics boils down to three items:  
user friendliness, accuracy of the final result, and efficiency (speed) of achieving the 
correct solution. 
 

IV. Linrad Overview 

Leif Asbrink, SM5BSZ, has developed a superb weak signal receiver in software, which 
is named Linrad, short for “Linux Radio”.  This receiver is the ultimate DSP tool for 
optimizing the receive chain where the human is the final link.  Here is what he has to say 
about Linrad, by way of introduction. 

“Modern computers have the processing power to outperform conventional radios in 
receiving signals with poor S/N. Particularly when the poor S/N is due to interferences 
rather than to white (galactic) noise the computer can remove interference within the 
narrow bandwidth of the desired signal by use of the information about the interference 
source retrieved by use of larger bandwidths. The signal processing can be far more 
clever than what has been possible before. Each interference source can be treated as a 
signal and the DSP radio can receive AND SEPARATE a large number of signals 
simultaneously. The DSP radio package is under development with flexibility and 
generality as important aspects. The DSP-radio for LINUX is designed for all narrow 
band modulation methods for all frequency bands. To start with the following modes will 
be included: Weak signal CW (primarily EME), Normal CW, High speed CW (meteor 
scatter), SSB, FM”.  He goes on to say, “The system is designed for flexibility so it can 
be used for many different combinations of computers, A/D boards and analog radio 
circuitry. The platform is Linux and the package will typically operate with a 486 
computer together with a conventional SSB receiver as the minimum configuration. The 
current high end operation is with a 4-channel 96 kHz A/D board and a Pentium III 
providing nearly 2 x 90 kHz of useful signal bandwidth in a direct conversion 
configuration (stereo for two antennas). When the Linux package is in full operation I 
will interface it to a modern radio A/D chip and digital data decimation chip. The 
component cost is very low and there will be an exciting improvement in dynamic range, 
bandwidth and flexibility.  The LINUX PC-radio for Intel platforms will be continuously 
upgraded to show various aspects of digital radio processing and how they are 
implemented in the DSP package. The Linux PC-radio is not designed for VHF weak 
signal only. It is very flexible and designed to accommodate routines for all radio 
communication modes on all frequency bands.  The program can run on a 486 to process 
3 kHz bandwidth with almost any sound board.  It can also run on a Pentium III with a 96 
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kHz board such as Digital River Delta44 [this is what I use; now called the M-Audio 
Delta44 -W3SZ] to produce spectra covering about 90 kHz bandwidth, using two mixers 
to provide a direct conversion receiver. (For EME it may be easiest to make a direct 
conversion receiver for a fixed frequency such as 10.7 MHz and put some converter in 
front of it).  This is an ongoing project.  The package will provide more than 30 kHz 
bandwidth with a standard audio board and should be very useful for 10 GHz EME and 
any other mode where a wide spectrum range has to be searched”.  
 
Leif started this project years ago with an MS-DOS PC radio (link 
http://ham.te.hik.se/~sm5bsz/pcdsp/pcdroot.htm) and has expanded the project and 
moved it to Linux for reasons of hardware portability (link 
http://ham.te.hik.se/homepage/sm5bsz/linuxdsp/linroot.htm).  Details on how to install 
and get started using Linrad can be found on Leif’s website at  
http://ham.te.hik.se/homepage/sm5bsz/linuxdsp/linrad.htm.   
 
Getting started with Linrad involves a few simple steps.  Figure 2 shows these in 
diagrammatic form, and the remainder of the text elaborates.  First, decide on what type 
of hardware you want to use for the RF-to-Baseband conversion.  Second, get a suitable 
computer for the RF-to-Baseband hardware you have selected.  Third, install Linux.  
Fourth, confirm the function of or install the svgalib graphics package.  Linrad will not 
run without it.  Fifth, confirm the function of or install the nasm (Netwide Assembler) 
package.  Linrad will not install without it.  Finally, install and setup Linrad.  Then run it. 
 

V.  Linrad RF-to-Baseband Hardware   
 
Linrad is the current state of the art for weak signal work.  The software receiver needs a 
baseband input to the soundcard from the RF hardware with a bandwidth at least as wide 
as the bandwidth of the desired waterfall/spectral display.  Given such an input, and using 
quadrature13 mixing and sampling, the soundcard sampling rate must be equal to or 
greater than the desired waterfall/main spectral display bandwidth.  If standard (non-
quadrature) mixers and sampling are used, the maximal waterfall/spectral bandwidth will 
be only half the sampling rate of the sound card.  Using an M-Audio Delta44 soundcard 
operating at a sampling rate of 96 kHz with quadrature detection and sampling, the 
useable waterfall bandwidth available is about 90 kHz. If the soundcard is used at the 
same sampling rate but with a conventional, non-quadrature mixer, the maximal waterfall 
bandwidth will be about half that, or 45 kHz. 
 
There are several options available for use as a front-end to Linrad.  First of all, it’s a 
simple matter to homebrew a very good front-end, as Linrad does all of the hard work.  
Here I used a circuit with a couple of TUF-1H mixers from Minicircuits, a 10.7 MHz 1st 
IF and filter, with a transistor amp for the first IF amp and a low-noise OP amp (AD797) 
for the 2nd IF amp.  This circuit is not quadrature, so I get just about 45 kHz of useful 
bandwidth with this approach when using it with the Delta 44.  I use a computer-
controlled 1st LO, so that I have wideband frequency coverage with the receiver; 
essentially from about 0 to 500 MHz (with appropriate filters at the input for each range, 
to prevent spurious responses).  Figure 3 shows a diagram of the circuit for my homebrew 
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receiver front-end.  I have two of these units operating simultaneously, one for the 
horizontally polarized antenna array elements and one for the vertically polarized 
elements.  Linrad uses both of these to provide reception that is always at the correct 
receive polarization angle; if the incoming wave is at 37 degrees polarization, that is how 
Linrad receives it.  No more “lock -out” or signal degradati on due to crossed-polarization.  
And Linrad does this automatically! 
 
The second option is to use a kit that was introduced by Expanded Spectrum Systems at 
Dayton this year, called “The Time Machine” 
(http://www.expandedspectrumsystems.com/prod2.html).  This company’s principal 
personnel include N4ESS and N4ES.  The Time Machine is a quadrature mixer Direct 
Conversion HF receive chain that covers the Amateur Bands in the range of 3.5 to 30 
MHz.  It mixes the incoming signal down to baseband frequency (in this case, 0-45 kHz 
each for the I and Q channels), and provides 45 KHz of bandwidth coverage above and 
45 KHz below the center frequency, for a total bandwidth coverage of 90 KHz.  The 
output of The Time Machine is connected to the input of the Delta44 sound card.  I use 
two of these units, one for each receive polarization, and use a TUF-1H mixer and 
computer-controlled 1st LO before the input, to mix the 144 MHz signal down to 10.7 
MHz, which is then fed into the Time Machine.  Another even simpler approach would 
be to feed the output of a 144 MHz to 28 MHz transverter into the input of The Time 
Machine instead of using a homebrew front-end.  Expanded Spectrum Systems offers an 
optional daughter board that allows easy connection of an external LO to The Time 
Machine.  Otherwise, you can use the crystals supplied by Expanded Spectrum Systems 
to control the LO.  In the future they may provide options for Direct Conversion at 
frequencies up to 144 MHz. 
 
The third (and best-performing) option for a front-end is becoming available piece by 
piece.  Leif has designed a superb front-end for Linrad, consisting of several parts.  It 
basically consists of separate units which provide conversion from 144 MHz to 70 MHz, 
from 70 MHz to 10.7 MHz, from 10.7 MHz to 2.5 MHz, and from 2.5 MHz to baseband. 
You can see his design for the latter two of these converters, complete with the circuit 
board masks on his website at http://ham.te.hik.se/homepage/sm5bsz/linuxdsp/optrx.htm.  
The 2.5 MHz to baseband converter is available now from Svenska Antennspecialisten 
AB, whose website is at http://www.antennspecialisten.se/ .  The unit is called the 
RX2500, and I have used it, and its performance is outstanding.  Linrad with this front-
end is now my main station receiver.  Eventually the entire receive chain will be available 
from Antennspecialisten.  For now, you must homebrew your own hardware to get down 
to 2.5 MHz.  That is not a difficult task. 
 
The easiest and quickest way to get your feet wet with Linrad is to use it with a 
conventional receiver, just feeding the audio output from your transceiver into the input 
of your soundcard.  When you do this, you will be limited to processing signals within a 
bandwidth no wider than the audio bandwidth of your receiver, but this will get you 
started very quickly and when you see what Linrad does, you will be more motivated to 
try one of the other approaches listed above. 
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VI. Computer Hardware Considerations. 

How fast a machine do you need to run Linrad?  It depends on the parameters.  With my 
setup, Linrad says that my machine, a 1.4 GHz Pentium 4 is idling 92.4% of the time 
while it is running.  In other words, only 7.6% of its processing power is being used by 
the program.  Leif has a very nice page that discusses timing / computation intensity 
issues and gives some examples for various hardware combinations.  It is on his website 
at http://ham.te.hik.se/homepage/sm5bsz/linuxdsp/fft1time/fft1time.htm .  For using 
Linrad as a DSP processor for SSB bandwidth audio from the headphone jack of a 
standard transceiver a Pentium at 60 MHz should be plenty fast.  To do 90 KHz 
bandwidth dual channel processing you should probably have at least a Pentium III 
operating at 650 MHz or so.  For SSB bandwidth processing any duplex soundcard that 
will run under Linux should do.  To get 90 KHz bandwidth, you will need quadrature 
(I/Q) mixing before the soundcard, and a 96 KHz sampling rate as noted above.  The M-
Audio Delta44 card has worked well with Linrad.  My setup here uses a Dell 8100 
Pentium 4 running at 1.4 GHz, with 256MB memory and a 40 GB hard drive.  I use an 
ATI Radeon AGP video card, and an M-Audio Delta44 for input and a Creative Labs 
SoundBlaster PCI64 for output. 

VII. Computer Software Considerations. 

You must have Linux as your operating system to run Linrad.  I use RedHat 7.2 and have 
also successfully used older versions of RedHat Linux.  Others have successfully used 
RedHat 8.0, Mandrake 7.0 and 8.0, SuSE Linux 6.3 and 8.0.  I set my computer up so that 
when I want to use Linux I boot from a floppy, otherwise it boots to Windows 98.  You 
can also set it up to dual boot from the hard-drive.  

Leif has an excellent roadmap of how to proceed once you have Linux installed and 
working at http://ham.te.hik.se/homepage/sm5bsz/linuxdsp/linrad.htm .  Once you have 
got Linux working, you need to make sure that you have svgalib-1.4.3 or later installed, 
or Linrad won’t work.  Under Linux type ‘updatedb’. This will  take some time and 
update your file database.  Then type ‘locate vgagl.h’.  If your computer answers with a 
message like ‘/usr/local/include/vgagl.h’ then svgalib is probably there and working.  If it 
is not, you need to get it and install it.  Leif’s sit e has the detailed instructions which you 
can find from the above link.  Once you have svgalib installed, you need to see if you 
have the program ‘nasm’ installed.  To find out, just type ‘nasm’ at the command prompt.  
If your computer says ‘nasm: no input file specified’ or something like that, you are OK.  
If it says ‘bash:nasm:command not found’, then you must find and install nasm.  Again, 
the details are on Leif’s website proceeding from the above address.  

Once all of this is done, you must install Linrad.  Again, this software is obtained from 
Leif’s site, listed above.  Once you have downloaded the software,  follow Leif’s 
instructions on how to proceed to install it.  Once installed, Linrad can be run either from 
a command line in terminal mode, or from a terminal window with Linux running X-
Windows (using Gnome, KDE, etc.).  Either way, just go to the Linrad directory and type 
‘./linrad’ and Linrad should run.  It will begin in the ‘setup’ mode, and will ask you to 
type “S” to begin the setup routines .  Type “S”.  It will ask you to choose a video mode.  I 
use 1024 x 768 (option 12 on my machines).  Then it will ask you to choose a font scale.  
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I use “1”.  Then it will ask you to enter a mouse speed reduction factor.  I type “100”.  
Then you will be sent to the main start page.  Type “W” to save what you have just done.  
Then type “enter” or “U” to start the D/A and A/D setup routine.  Choose the appropriate 
input device from the list presented to you.  There are many possible choices depending 
upon your hardware, and specific advice cannot be given here, except to be aware of the 
sampling rate, the number of channels, the bit size, and whether the device is 
unidirectional or duplex.  After you make your selection and type ‘enter’, it will ask you 
if the device is RDONLY or RDWR.  Choose RDONLY first.  If there is no output when 
this is done, then try again choosing RDWR.  Choosing RDWR requires that the input 
and output sampling speeds are the same, and this will tax slower CPU’s.  The output 
sampling speed is intended to be about 5000 Hz for CW, and being forced to run it at 
44100 Hz or higher because that is the input sampling speed and you’ve picked RDWR 
will be very inefficient.  If you are using two soundcards, one for input and one for 
output, the input soundcard should of course be designated as RDONLY. Next select the 
appropriate type of interface from among the choices presented, which will depend upon 
your hardware.  Finally, select the optimal input sampling rate for your purposes and 
conditions.  This will be determined by the input bandwidth you want to achieve.  If you 
are using quadrature mixing it will be at your desired bandwidth or slightly higher.  If 
you are using conventional mixing it will be set to at least twice the desired bandwidth.  
You may gain some additional anti-aliasing protection by going above this, and you may 
also see a small improvement in dynamic range by oversampling.  But your CPU speed 
may limit you in this regard.  You may then be asked to type any key to return to the 
main menu, or to continue on with configuring the output hardware.  Once you get back 
to the main menu, type “W” again to save your settings.  Then type “A” to enter the weak 
signal CW mode.  The first time you do this you will be asked to enter parameter values.  
For the first test, just repeatedly press “enter” to select the default choices.  The default 
choices may not work if your computer is really slow.  In that case, try deselecting the 
second FFT to speed things up. Doing all of this, you will eventually come to the main 
Linrad receiver screen.  Then you can configure the screen and proceed as described 
under section IX, below. 

If Linrad doesn’t work  with the sound drivers that came installed with Linux, you will 
need to install the OSS drivers, available from http://www.opensound.com .  After you 
install OSS, you will need to recompile Linrad by again running ‘./clean’,  ‘./configure’ , 
and then ‘make’  before running Linrad again so that Linrad knows to look for the new 
drivers. 

VIII. Linrad Software Block Diagram 
 

A block diagram of the functionality of Leif’s software  is helpful in understanding how it 
works.  Figure 4 is a copy of Leif’s block diagram, taken from his website.   The receiver 
input is at the top left of the diagram and the audio output is at the bottom right.  Two 
input signal paths are shown, one for the horizontally polarized antenna elements and one 
for the vertically polarized elements.  The FFT’s are of course fast Fourier transforms, 
that take the signal from time domain to frequency domain, and the timf’s are reverse 
transforms that take the signal from frequency domain back to time domain.  The first 
FFT is used to generate the wideband spectrum display, and signals are separated into 
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two groups: strong signals on the one hand, and weak signals and noise on the other.  
AGC functions are then performed on the strong signals so that they stay within the 
desired bit range, and then the signals are subjected to reverse Fourier transformation that 
puts them back in the time domain.  The noise blanker is then applied.  The noise blanker 
is a novel, two stage circuit if the Linrad receiver has been calibrated for frequency and 
phase response using a pulser unit.  (This procedure is not difficult, and is described in 
detail on Leif’s website).  The first stage blanker is called the ‘clever’ blanker.  It models 
the noise and fits to each pulse a ‘standard’ pulse with amplitude, phase, fractional 
position, and polarization all calculated to match the actual noise pulse as closely as 
possible.  The standard pulses are then subtracted from the signal waveform, reducing the 
noise pulses by approximately 30 dB. The ‘dumb’ second stage blanker then removes all 
data points for which the total power is above a given threshold.  This reduces the noise 
by approximately 40 dB.  The results achieved by this two-stage noise blanker are 
phenomenal!  If the receiver has not been calibrated, then just the “dumb’ noise blanker is 
available, but even this does a very good job because it operates on the time domain 
signal that has had the strong signals removed.  Without these strong signals present it 
can operate much more effectively than a conventional noise blanker that must operate 
with these signals present in the passband.  After noise blanking is done, the second FFT 
is performed.  This produces the waterfall display, and after the polarization control 
algorithm is applied, the high resolution display is generated.  Automatic Frequency 
Control is derived from the results of the second FFT.  A second reverse FFT is 
performed, using a decimation filter (sampling only part of the second FFT spectrum).  
This is equivalent to using a mixer followed by a filter and then resampling the signal.  A 
third FFT provides the baseband display.  It is then multiplied by the user-selected filter 
and then another reverse FFT returns the signal to the time domain for final signal 
processing.  Audio is then sent from the soundcard to either audio amplifier, speakers, or 
headphones for the final step of human decoding.  All of this is explained in very detailed 
fashion on Leif’s website.  In addition, Linrad’s source code is there.  
 

IX. A Discussion of Linrad’s Main Receiver Screen and its Operation  
 
I have found that Linrad does an absolutely superb job of allowing me to hear the desired 
weak signal hidden in the midst of the all the noise and clutter present at my urban QTH. 
It does this better than any other receiving system I have ever tried.  I generally use it 
with the filter set at 20-25 Hz.  The best way to describe Linrad’s operation and features 
is to discuss a series of screen grabs I made using data recorded at SM5FRH on 144 MHz 
during the 2001 ARRL EME contest.  Across the top of Figure 1 you see the frequency 
scale in Hz.  Here Linrad is set up to cover 90 kHz, which is a reasonable spread for 2 
meter EME.  With it set up like this, one can see everything that is going on in a 90 kHz 
slice of the band. The small arrows near the left and right corners at the top of the screen 
allow adjustment of the frequency width and the center frequency of the waterfall and 
main spectrum displays (which track together in this regard),. 

Below the frequency scale at the top of the screen is the waterfall display, showing signal 
intensity as a function of frequency horizontally, and as a function of time, vertically. 
 Earlier times are nearer the bottom, most recent times at the top. Decimal minutes are 
displayed along the left vertical axis. The time display reads 00.00 because this screen 
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was taken using pre-recorded data (this is a minor bug).  You can see numerous vertical 
dashed lines on the waterfall display.  Each of these represents an EME signal.  A quick 
count suggests that more than 40 EME signals are seen on the waterfall.  Just below the 
waterfall on the screen is the real-time main spectrum display.  Signal strength is the 
vertical axis and frequency is the horizontal axis, corresponding to the same locations on 
the waterfall and the frequency calibration at the top of the graph.  The little up/down 
arrows at the bottom left and middle right of this display allow you to adjust the range 
and center point (baseline), respectively, of the spectrum amplitudes displayed, so that 
the signals are the right vertical size for best viewing, and centered as you wish on the 
display. It is much more difficult to pick out weak signals on this display than on the 
waterfall, and I don’t use the spectral display very much. Leif notes that the main purpose 
of the main spectral display is to aid in noise blanker level adjustments and to show very 
strong signals that saturate the waterfall display.  If the second FFT and AFC are 
deselected, the main spectral display becomes an excellent spectrum analyzer.  On this 
screen, at about 50.400 KHz on the spectral display you can see a strong signal and a 
cursor over top of it.  This is I3DLI’s signal . 

Below this on the left as displayed from top to bottom are the boxes to set (by clicking on 
the box and then typing in the desired values): the number of FFT1 averages per 
displayed point of the spectrum, the number of FFT2 averages per line of the waterfall, 
the zero point of the waterfall display, the gain of the waterfall display, the number of 
averages per displayed point of the baseband window spectrum (this is the display with 
green horizontal lines), and the number of averages per displayed point of the high 
resolution spectrum (this is the display with red horizontal lines).  

To the right of the lowest two of these boxes is the small coherence graph and signal 
amplitude box.  The coherence graph shows that I3DLI’s signal has good phase 
coherence for automatic CW copying, and his signal amplitude as received here is 47.22 
dB averaged over both key up and key down times, 52.57 dB current key down level, and 
57.51 dB peak key down level since signal selection by the operator.  The colored dots in 
the upper half of this box show the statistics of the complex amplitude of the baseband 
signal, using the same color scale as the waterfall display.  The distance from the center 
of the crosshairs is proportional to the signal amplitude.  Zero phase angle is to the left.  I 
is along the x axis, and Q is along the Y axis.  If the operator has selected a large 
coherence ratio (here the ratio equals 8; see description in the paragraph describing the 
baseband display below) and there is no signal (white noise), then the points will scatter 
evenly in all quadrants since there is no correlation between the phase of the carrier and 
the instantaneous phase of the total signal in the filter passband.  As a result a round area 
at the crosshair center will be formed.  If a perfect signal with no QSB is present, the 
round area will move a distance along the x-axis that corresponds to the signal amplitude.  
A perfect CW signal in white noise will produce two circular areas, one at the center 
corresponding to key up, and one displaced to the right at a distance corresponding to the 
signal amplitude.  If a signal has some chirp and constant amplitude, then the signal will 
form an arc with constant radius, with the phase drifting symmetrically around zero 
during the key down period.  This can be seen with I3DLI’s signal on this screen, for 
which the phase drifts within approximately +/- 20 degrees while the amplitude is 
saturated.  The horizontal bar below the crosshairs box shows the time duration of CW 
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dashes in relation to the duration that would be optimum for the selected baseband filter.  
The dots should be near the center of the display if the filter width is set optimally. 

Below and slightly to the right of the coherence graph and signal amplitude box is the 
adaptive polarization control. The software receiver can be set up to receive two channels 
of data.  In this case, one is the signal from the vertical elements of the EME array, and 
the other is the signal from the horizontal elements.  By rotating the line with the mouse 
you can select any desired receive polarization angle.  Or, you can leave this set to 
automatic or 'adaptive' mode and then the software constantly optimizes the polarization 
angle and phase.  Moving the line on the horizontal bar (green when you can see the 
colors) changes the polarization from linear to elliptical to circular. I usually leave the 
polarization control set to ‘adapt’ and let the computer do the work . The little blue 
“receive polarization” display that is a part of this control shows that the received 
polarization angle for I3DLI is 28 degrees, and that Linrad is in the adaptive polarization 
mode, where it follows the polarization angle and phase of the received signal 
automatically. 

To the left of the adaptive polarization control is the EME Window.  Once the EME 
Window is set up by typing “M” on the main menu and the database files dir.skd, 
eme.dta, and allcalls.dta are placed in the /home/emedir directory, Linrad will provide 
data on DX EME stations.  I3DLI has been typed into one of the boxes, and the EME 
window gives his data in green.  Because this screen was made using a previously 
recorded file, the data does not reflect the actual conditions when I3DLI was heard, but 
rather it reflects the conditions when the file was replayed and this screen recorded.  At 
the time of the playback of the recording of the EME contest, the terrestrial azimuth from 
W3SZ to I3DLI was 53 degrees.  The terrestrial distance to I3DLI’s grid of JN65bi was 
6825 km.  I3DLI’s a zimuth to the moon was 264.5 degrees, and his elevation -30.1 
degrees.  W3SZ’s azimuth to the moon at th e time of the playback was 199.9 degrees, 
and the elevation was 22.2 degrees.  Given that the receive polarization angle of I3DLI 
was 28 degrees, the calculated optimal transmit polarization angle for W3SZ was 95 
degrees. 

 To the right of the polarization control box is the high resolution display. Here is the 
important and, really, incredible part of Linrad.  By clicking with the mouse cursor at any 
point on the waterfall (or the main spectrum) you cause that portion of the spectrum to be 
placed in the high resolution spectrum box and DSP-processed.  That is, that portion of 
the spectrum is DSP-filtered, noise-blanked, and converted to audio frequency so that it 
appears in your headphones or on your speakers.  IT IS POINT AND CLICK 
RECEIVING!!!  Because of the excellent DSP, this is an incredible experience.  If you 
are not clicked on a signal, the receiver is quiet.  When you click on a peak, the signal 
pops into your headphones.  To fine tune, you click on the peak in the high resolution 
spectrum, if need be, to touch up the tuning.  On the high resolution display, there is 
excellent resolution of the signals.  You can see that I3DLI is just above (144,)050,400 
Hz.    The green vertical cursor at the bottom of the high resolution display marks the 
frequency of I3DLI as tracked by the AFC circuit.  On the high resolution display there 
are centered above this cursor a larger, green peak and a smaller, purple peak.  The larger, 
green peak represents the selected polarization component of the received signal, and the 



 12 

purple peak represents the smaller, orthogonal polarization component.  Optimal 
polarization matching of the received signal is achieved when the purple signal is 
minimized and the green signal maximized.  The narrow gray cursor extending vertically 
across the high resolution display at 50400 Hz represents the frequency of I3DLI at the 
time his signal was selected by clicking on it, and the distance between this cursor and 
the smaller green cursor represents the drift or change in Doppler shift of I3DLI’s signal 
between the current time and the time that the signal was selected by clicking on it. The 
two tiny “A ” s (yellow and blue when you can see the colors) at the bottom left of the 
high resolution window are for setting the mode by which the levels of the 'dumb' and 
'smart' digital noise blankers are adjusted.  You have your choice of [-] (no noise 
blanker), [A]utomatic, or [M]anual for these blanker settings.  Automatic means that the 
blanker level follows the noise floor automatically, but the operator is responsible for 
setting the level above the noise floor in a way that fits the hardware he is using.  Manual 
means that the blanker level is fixed.  The tiny “o” at the right bottom of this display 
turns on the oscilloscope function that shows the time domain signals at the inputs to the 
summation devices just before the second FFT is performed (see figure 4, top line, just to 
the right of center of the figure).  The signals are presented showing first the real power 
spectrum of the signal, and then the real and imaginary components of each polarity of 
both the weak and strong components of the signal, giving a total of 9 different 
‘oscilloscope’ tracings for each time point.  With such a display you can really tell what 
the blankers are doing and gain lots of other useful information.  This is explained in 
detail on Leif’s website, e.g. http://nitehawk.com/sm5bsz/linuxdsp/timf2/timf2.htm gives 
an example of what can be done with this display. 

To the right of the high resolution display, on top, is the baseband display.  In the 
baseband window you can see that I3DLI’s s ignal is nicely centered in a 25 Hz 
bandwidth filter. The line and ‘hump’ or inverted ‘U’  (yellow when you can see the 
colors) in the baseband display show the filter center frequency, bandwidth, and shape 
factor in graphical form. If you want a different filter bandwidth or shape factor, you just 
take the mouse over to the baseband display, and drag the filter curve wider or narrower, 
and the filter adjusts graphically.  THIS REALLY WORKS!! On this display you can see 
both the center of I3DLI’s signal and the keying sidebands within the yellow outline o f 
the filter band pass curve.  There are several controls in the baseband window.  As we 
just noted, by dragging the yellow lines with the mouse you can set the filter width and 
shape factor.  There is a red horizontal bar at the left of the window that does not really 
show up with grayscale reproduction. This is the level or volume control and it is 
adjusted by clicking it or dragging it with the mouse.  Above it is a very bright red ‘dot’ 
(actually a short, horizontal line) that indicates the received signal level. It is ‘pinned’ at 
the top of the scale, commensurate with I3DLI’s usually excellent signal strength.   The 
fact that this is red indicates that I3DLI’s sig nal is so strong that the audio channel has 
saturated with the selected audio gain level.  Reducing the gain will cause this dot to 
become white in color and to fall below the top of the graph. There are three red vertical 
bars on the left of the window that are the BFO controls.  You can vary the pitch of the 
received signal without taking it out of the filter pass band or moving it in the display by 
dragging one of these three bars.  The upper bar represents the true BFO frequency.  With 
the expanded frequency scale it is actually far outside the window and therefore cannot 
be used to set the desired pitch.  The lower bars have the frequency scale of the BFO 
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frequency offset contracted by 10 and 100 times respectively, so that at least one control 
will always remain in the window and be available to set the BFO frequency.  There are 
other controls at the bottom of the baseband display for turning on either an amplitude 
limiter or expander, for choosing the coherent processing mode, adjusting coherent 
receive parameters, and altering how the program handles the two signals in a dual 
polarity receive system.  The leftmost of these controls [Exp] indicates that the amplitude 
expander is turned on.  The next box gives a choice of 4 operating modes: normal [off]; 
binaural CW (one ear delayed) [coh1]; coherent with signal (I  signal) in one ear and 
noise (Q signal) in the other ear [coh2]; and signal (I) to both ears, and noise discarded 
[coh3] (‘coh3’  selected in this screen).  If the signal is not quite stable enough for coh3, 
then using coh2 instead may be of some help.  I find that running with [Exp] and [coh3] 
works very well.  The next box [Rat 3] sets the ratio between the baseband filter width 
and the width of a subfilter used to extract carrier information for the coherent 
processing.  The last three boxes at the bottom of the baseband window are very difficult 
to see in a grayscale image, as they are actually dark blue on a black background.  The 
fourth box [off] or [del] (‘off’  selected in this screen) toggles on or off the signal delay 
between the ears.  The delay can be activated only when ‘coh’ and ‘X+Y’ are not 
selected.  The fifth box [8] is the value of the delay if selected in the previous box.  The 
last box [off] or [X+Y] (‘off’  selected in this screen) when set to [X+Y] sends one of the 
received signals to one ear and the other to the other ear. 

Below the baseband display and immediately to the right of the high resolution display is 
the automatic frequency control box.  This displays time along the horizontal axis and the 
received frequency vertically.  The upper (yellow) trace is the signal-to-noise ratio of the 
received signal, and the lower trace (actually two traces, superimposed) is the frequency 
of the received signal, in green, and the frequency of the DSP LO in white.  The boxes at 
the bottom of this display allow you to set the averaging parameters for the AFC circuit. 

Linrad has context-sensitive help screens.  If you place the mouse cursor over a control or 
text field and press the ‘F1’ ke y, context-sensitive help will pop up.  You can press any 
key to get back to the Main Receiver screen.  If you place the mouse cursor over some 
“empty space” and press ‘F1’ you will see the control fields highlighted.  You can exit 
Linrad at any time by pressing the ‘escape’ key.  

If you don't have a receiver with a wide (20-90 kHz) IF bandwidth you can still gain 
experience with Leif's receiver running in wideband mode.  On his website Leif has lots 
of 90 KHz wide files recorded using Linrad at SM5FRH during the 2001 ARRL EME 
contest that you can download from http://ham.te.hik.se/~sm5bsz/arrl2001/index.htm .  
These files are large, ranging from about 90 to about 450 MB, compressed in bzip2 
format.  FRH1135 is particularly nice and is the first one listed on Leif’s  page.  Once you 
have his receiver running on your computer you can put the names of these files (once 
they are uncompressed using bunzip2 or equivalent) in a text 'adfile' that you create in the 
Linrad directory.  This file will direct Linrad to these data files and when you start Linrad 
you can type ‘h’ or 'j' and the program will run just as if you were actually receiving this 
data via your own antennas.  You can click on the various signals, and even play with the 
receive polarization control.  It is truly amazing to do this!  Leif's main Linrad radio page 
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has links to his many useful pages of explanation, diagrams, screenshots, etc.  His 
website is a real treasure trove. 

X. Linrad Performance 

I have extensively used Linrad for 144 MHz and higher frequency weak-signal work for 
more than one year and have gained great admiration for it during that time. I frequently 
have pulse noise here that can read S7 to S9 on the conventional receivers.  The 
conventional receivers’ noise b lankers are not sufficiently good for me to do weak signal 
or especially EME work when this noise is present, even if I run other DSP programs 
such as DSP-Blaster (which is very good) with LMS Noise reduction and DSP filters 
from the receiver headphone output.  But Linrad’s two noise blankers do an extremely 
effective job of removing the noise as long as the receiver is not overloaded.  In addition, 
the digital filters used in Linrad are very effective and have very little ringing.  I 
generally run Linrad at 20-30 Hz filter width (usually nearer 20 Hz) with excellent 
results.  With Linrad’s  AFC turned on one does not experience the problem of the signal 
drifting out of the very narrow filter passband.  The other major improvement I have 
found with Linrad for EME work is always having the correct receive polarity.  Because 
Linrad is constantly receiving both the horizontal and vertical polarizations and 
computing the actual received signal polarization and setting its polarization to match, the 
problem of Faraday Rotation disappears for all practical purposes.  Thus one vexing 
variable is removed from the difficult EME equation.  For these reasons I just don’t use 
anything but Linrad for 144 MHz weak signal work anymore.  I will sometimes again set 
up the FT1000MP Mk V or Elecraft K2 and LT2S Mk II at the beginning of an EME 
contest to compare with Linrad, but Linrad is so clearly superior that I quickly return to 
using Linrad only.  And there is the distinct advantage with Linrad of seeing everything 
that is going on over the entire segment from 144.010 thru 144.100 MHz, nearly the 
entire EME band, all at once.  Because many of the EME stations use consistent 
frequencies, I can pretty much tell who is transmitting at any time.  And when a new 
station comes on a frequency, I can QSY there to work him with the click of a mouse.  
All of this makes using a conventional receiver seem like a terrible step backwards.  
Linrad has met or exceeded all of my expectations.  Operations here at W3SZ during the 
2002 ARRL EME contest were typical of my experience with Linrad.  Using Linrad as 
the receiver and running 1.5 kW output with low loss 7/8 inch hard-line from the 
transmitter to the base of my antenna support structure, and LMR600 from there to the 2 
x 2 M2 2MXP20 array, I found that exactly 50% of the stations that I called after I had 
received Q5 copy of their CQ and callsigns using Linrad as my 144 MHz receiver were 
able to copy my call.  The other 50% could only send QRZ, and were not able to copy my 
call even though I called for extended periods of time, and varied my transmit 
polarization periodically to mitigate the possible effects of Faraday rotation.  Because I 
used automated keying, I could not explain this on the basis of my poor ‘fist’.  So I 
believe it reflects the superiority of Linrad as a weak signal receiver for 144 MHz EME 
use as compared to the receivers used elsewhere. 

XI. Summary 

I encourage you to get started with Linux and try out Linrad.  It is a step into the future of 
radio, and particularly amateur radio, communications.  If you do weak signal work, you 
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will find it to be a tremendous step forward.  For further information on Linrad and other 
DSP techniques for weak signal use refer to the links provided in this brief article, or 
refer to the links given on the web page “    http://www.qsl.net/w3sz/start.htm  “ , or 
subscribe to the Linrad reflector. To subscribe to the Linrad mailing list, send email to: 
majordomo@antennspecialisten.se with the following text on the first line of the body of 
the text: “ subscribe Linrad”.  The Linrad mailing list is archived at 
http://www.antennspecialisten.com/linrad-archive/ .  I thank Kohjin Yamada JR1EDE, 
Joe Kraft DL8HCZ, and especially Leif Asbrink SM5BSZ for their great help with this 
manuscript, and in Leif’s case  also for his great patience with me and my many questions 
as I began using Linrad over the past two years. 



 16 

Bibliography 

 
1 The ARRL Handbook for Radio Communications, 2003 Edition.  Newington, CT, USA.  Chapter 
18. 
2 Bob Larkin, “The DSP-10: AN All-Mode 2-Meter Transceiver Using a DSP IF and PC-Controlled 
Front Panel”, --Part 1, Sep 1999 QST, pp 33-41; --Part 2, Oct 1999 QST, pp 34-40; --Part 3, Nov 
1999 QST, pp 42-45. 
3 Gerald Youngblood, “A Software-Defined Radio for the Masses”, --Part 1, Jul/Aug 2002 QEX, 
pp 13-21; --Part 2, Sep/Oct QEX, pp 10-18; --Part 3, Nov/Dec QEX, pp 27-36; --Part 4, QEX, in 
press. 
4 James Scarlett, “A High-Performance Digital-Transceiver Design”, --Part 1, Jul/Aug 2002 QEX, 
pp 35-44. 
5 John B Stephensen, “Software-Defined Hardware for Software-Defined Radios”, Sep/Oct 2002 
QEX, pp 41-50. 
6 Leif Asbrink, “Linrad: New Possibilities for the Communications Experimenter, Part 1”, Nov/Dec 
2002 QEX, pp 37-41. 
7 Doug Smith, “Signals, Samples, and Stuff: A DSP Tutorial”, --Part 1, Mar/Apr 1998 QEX, pp 3-
16; --Part 2, May/Jun 1998 QEX, pp 22-37; --Part 3, Jul/Aug 1998 QEX, pp 13-27; --Part 4, 
Sep/Oct 1998 QEX, pp 19-29. 
8 See Leif Asbrink’s Linrad Home Page at sk7do.te.hik.se/~sm5bsz/linuxdsp/linrad.htm 
9 See Bob Larkin’s DSP-10 Home Page at www.proaxis.com/~boblark/dsp10.htm 
10 See my DSP Starter Page at www.qsl.net/w3sz/start.htm 
11 Matt Ettus, “Software Defined Radio”, http://www.ettus.com/sdr/sdr_seminar_2002.pdf  
12 See Joe Taylor’s WSJT Home Page at pulsar.princeton.edu/~joe/K1JT/ 
13 Richard Lyons, “Quadrature Signals:  Complex, But Not Complicated”, 
http://www.dspguru.com/info/tutor/QuadSignals.pdf   
 

 

 



 17 

 

Figure 1.  Linrad screen showing a 90 kHz portion of the 2 meter band as received 
at SM5FRH during the ARRL 2001 EME Contest.  On the waterfall display at the 
top of the screen you can see at least 40 vertical dashed lines; each one of these is an 
EME station’s signal as received by Linrad, SM5BSZ’s software receiver.  See the 
text for further details.  
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Figure 2.  This is a block diagram of the simple steps required to get a Linrad 
installation up and running.  See text for details. 
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Figure 3.  This is a schematic of the front-end I use with the Linrad software 
receiver.  It is a simple configuration, but works well for me.  The combination of 
this front-end and Linrad outperforms the conventional receiver combinations I 
have tried. 
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Figure 4.  This is Leif SM5BSZ’s block diagram of the Linrad Linux PC Receiver.  
Input is at upper left corner, and audio output is at lower right corner. 
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