

Station Automation
--W3SZ

Programmable IF Attenuator

Programmable IF Attenuator

● Get Binary band info from N3FTI device
● Set receive and transmit in-line attenators to provide proper RF signal levels

to/from IF radio
● Alan Industries 50 DA63 gives 0-63 dB atten. in 1 dB steps

– Requires 26 VDC control voltage and power
– Binary control needs 6 control pins each for Tx, Rx

● Parallax Basic Stamp controller
– Uses PBASIC language
– 16 I/O pins (BS 2p24)

● Use ULN2803 Octal Darlington Array IC's to control 26V signal to the attenuator
using 5V output from Basic Stamp I/O pins

● Basic Stamp code is at:
– http://w3sz.com/BasicStampDeviceControlCodeHandout.pdf

http://w3sz.com/BasicStampDeviceControlCodeHandout.pdf

Programmable IF Attenuator

Programmable IF Attenuator
Coding

● No Libraries to declare
● Define and initialize variables
● Define input pins
● Get input from N3FTI device
● Parse input from N3FTI device to determine band
● Define attenuation levels for Tx and Rx based on band
● Determine Binary output pin settings based on attenuation levels
● Define output pins
● Set output pin levels

Programmable IF Attenuator

Page 32 Code Handout

Programmable IF Attenuator
Declare variables

Page 32 Code Handout

Programmable IF Attenuator
Declare variable FREQ

Pages 32-33 Code Handout

Programmable IF Attenuator
Declare and initialize more variables

Page 33 Code Handout

Programmable IF Attenuator
Declare still more variables

Page 33 Code Handout

Programmable IF Attenuator
Define input and output pins

Pages 33-34 Code
Handout

Programmable IF Attenuator
Start Loop, Read Inputs, Calculate Band

Page 34 Code Handout

Programmable IF Attenuator
Determine attenuation levels based on band

Page 34 Code Handout

Programmable IF Attenuator
Determine Binary output pin levels based on

attenuation levels

Page 34-36 Code
Handout

Programmable IF Attenuator
Set output pin levels

Page 36 Code Handout

Why Even Mention Basic Stamp?

● To illustrate some major points of this symposium:
– Following the “prescription” for writing code given in this symposium

will allow you to easily write code in any language
● Use Google to find a piece of previously written code relevant to your

objective
● Read the “found” code and modify it to suit your objective
● Learn from the “found” code
● When you run into a roadblock, ask Google

● With access to Google, the language used borders on
irrelevant; it is the logic that is important

THE LOGIC IS ALWAYS THE SAME, REGARDLESS OF
WHAT PROGRAMMING LANGUAGE IS USED!!

Lets quickly convert the Basic
Stamp PBasic to Arduino C

● 1. Change markers designating “comment” lines
– Comments in PBasic are indicated by single quote
– Comments in Arduino C are indicated by double-forward slash
– Just cut and paste to change all single quotes to “//”

● 2. Change the form of variable and constant declarations
– “RX50 VAR Byte” is declaration syntax in PBasic
– “byte RX50” is declaration syntax in Arduino C
– Use variable type “int” instead of “byte” in Arduino C
– To change each declaration statement; Just cut and paste to change all

“XXXX VAR Byte” to “ int XXXX”
● When you declare variables, just include the initialization in the declaration

statement:

int RX50 = 8; Page 45 Code Handout

Convert PBasic to Arduino-C

● 3. Statements in PBasic don’t end with a semi-
colon but those in Arduino C do, so add a “;” to
the end of each statement

● 4. Because of limited memory, some variables
in PBasic were type “Nibs” - half a byte. Just
make these variables int-type variables in C; we
don’t need to worry about memory

● 5. Same for “bit” variables in PBasic...just make
them int-type variables in Arduino C

Pages 45-47 Code
Handout

Convert PBasic to Arduino-C
Handling the GPIO Pins

● 6. Cut the input and output pin definitions and setup
portions from the PBasic program and paste them into
the definitions and “setup” portions of the Arduino C
program
– For the definition of input pins, “A PIN 0” would become

const int PinA = A0; (Arduino analog input pin labels start with “A”)

– Add in the setup section, for each input pin:
pinMode(PinA, INPUT);

pinMode(PinB, INPUT); etc.

● And we need to add in the definitions section a variable
to “read” each pin, for example for PinA:

int A = 0;

Pages 47-48 Code
Handout

Convert PBasic to Arduino-C
Handling the GPIO Pins

● For output pins, “OUTPUT 4” would become
PinMode(4, OUTPUT)

● But lets improve code and assign a constant label to each output
pin for easier pin identification, e.g.:

const int TxOUT1 = 4;

● And we need to set the mode of each OUTPUT pin and initialize it,
so “OUTPUT 4” is replaced by:

const int TxOUT1 =4;

PinMode(TxOUT1, OUTPUT);

digitalWrite(TxOUT1, LOW);

● Do the same for each Rx and Tx output pin

Page 48 Code Handout

Convert PBasic to Arduino-C
Main Program Loop

Reading and Parsing Input Pins

● The “automatic pin read” in PBasic becomes:
A = digitalRead(PinA);

● THE LOGIC REMAINS THE SAME:
//Calculate band from Binary input

FREQ = A + (B*2) + (C*4) + (D*8);

IS UNCHANGED EXCEPT FOR ADDING “;”

Page 49 Code Handout

Convert PBasic to Arduino-C
Determining Output Levels

● //set RXOUT and
TXOUT attenuation
levels based on Binary
input from N3FTI

SELECT FREQ

CASE = 0

 RXOUT = RX50

 TXOUT = TX50

CASE = 1

 RXOUT = RX144

 TXOUT = TX144

● //set RXOUT and TXOUT
attenuation levels based
on Binary input from N3FTI

switch (FREQ) {

case 0 : {

 RXOUT = RX50;

 TXOUT = TX50;

break; }

case 1: {

 RXOUT = RX144;

 TXOUT = TX144;

break; }

Pages 49-50 Code Handout

Convert PBasic to Arduino-C
Main Program Loop

Final SELECT case statement

● PBasic had:

 CASE > 10

 RXOUT = RX24G

 TXOUT = TX24G

● C switch
statements only
support simple
integer matches:

 case 11: {

 RXOUT = RX24G;

 TXOUT = TX24G;

 break;}
Page 50 Code Handout

Convert PBasic to Arduino-C
End of SELECT Statement

● PBasic had:

 ENDSELECT

● In Auduino C this
is simply:
}

Page 50 Code Handout

Convert PBasic to Arduino-C
Set Pin Outputs using Output Levels We

Just Determined
// DETERMINE RCV
and TX output pin
levels based on values
of RXOUT and TXOUT

IF (RXOUT >= 32) THEN

 RCV32 = 1

 RXOUT = RXOUT - 32

ELSE

RCV32 = 0

ENDIF

// DETERMINE RCV
and TX output pin
levels based on values
of RXOUT and TXOUT

if (RXOUT >= 32) {

 RCV32 = 1;

 RXOUT = RXOUT – 32;}

else {

RCV32 = 0; }

Page 50-51 Code Handout

Convert PBasic to Arduino-C
Set Pin Outputs

// Use RCV and TX
levels as just
determined to set
output pin levels

OUT4 = TX1

// Use RCV and TX
levels as just determined
to set output pin levels

digitalWrite(TxOUT1,TX1);

Page 52 Code Handout

Convert PBasic to Arduino-C

● A few more lines of code added for Serial Port output
(for debugging)

● Code tested with hardware and is working
● Code is at:

– http://w3sz.com/IFLevelSet_ContestSettingsNewIno.ino

● We could have converted instead from .bsp to python for use on
BeagleBone Black or Raspberry Pi, just as easily

● Again, the language is almost irrelevant...it is the LOGIC that is
important

http://w3sz.com/IFLevelSet_ContestSettingsNewIno.ino

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

