Station Automation --W3SZ

- Band switching IF radio, transverters is only part of the story
- If have more than 1 IF radio, then need to switch Mic (or digital transmit audio), receive audio, Footswitch/PTT, CW Key between IF radios
- Device bandswitching is potentially fundamentally different if you are using SDR vs conventional radio
 - For SDR can potentially use virtual connections, switch in software without need for electromechanical switching
 - For conventional radio, need to use electromechanical switching (relays or solid state switches)

- If you are running Vista or newer OS:
 - N1MM will provide receive audio switching between Radios 1 and 2
 - N1MM will handle switching pre-recorded transmit audio messages between Radios 1 and 2
- Still need to deal with switching CW key, "live" microphone transmit audio between IF Radios
- N1MM options for receive audio switching may not be sufficient for all operators
- So something beyond plain vanilla N1MM is required for adequate device bandswitching

• At W3SZ: All done in software:

W3SZ Multi SDR Controller																				
MAIN	50	0 144	0 222	0 432	O 903	0 1296	0 2304	0 3456	0 5760	() 10G) 24G	L Foot	Mic	Key (N1MM+ Digital Tx Rx Tx V Rx	Mute	DigiCAT	Set	tup
AUX	0 50	144	○ 222	0 432	O 903	0 1296	0 2304	3456	O 5760	🔾 10G	🔿 24G	0		0	<u> </u>	Tx Rx Tx Rx	\checkmark	DigiCAT	Mic / Reset R	Aud leset
MTBW 4kHz	MTBR 24576	МТ Тур	e Audio		ATBW	4 kHz ATI	BR 24576	AT Type A	udio	MRBW 6k	Hz MRBF	R 131072	MR Type	e Audio		ARBW 6 kHz ARBR	131072	AR Type Audio		

Any Band / IF Radio can be assigned to either Main or Aux "radio" by the click of a button at any time

Footswitch, Mic, CW Key, Digital Audio can be selected for either Main or Aux "radio" at any time by the click of a button or checkbox

Rx Audio is always present for radios in both Main and Aux positions

- Unfortunately, many stations don't have the capability of controlling everything in software
- Stations exist at many different levels of technology / computerization
- What you need to do / what you can do to automate device bandswitching depends on many station-specific factors

Device Bandswitching Maybe Not That Simple?

- CAT-Controlled (some or all of the IF radios)?
- Logging program: running SO2R or not?
- Logging program: MK2R+ / OTRSP compatible?
- Logging program: will it handle audio switching?
- Number of IF radios?
- Do radios have built-in codecs?
- SDR or conventional radio?
- Hardware or virtual serial ports?
- If SDRs, can everything be done in software?

- Electromechanical Device Switching using switches and/or relays rather than virtual audio and virtual ports and doing the switching in software, is the first (and sometimes final) step for many
- The mechanics of Electromechanical Device Bandswitching are fundamentally no different than bandswitching the transverters
 - You want mic or digital transmit audio, receive audio, footswitch/PTT, CW Key to follow your attention to the IF radio of your choice

Electromechanical Device Bandswitching

- Can be done with relays and switches alone
 - No computer or software needed
- Can be done using Arduino or other MCU or SBC
 - Generally done in conjunction with logging software
- In either case, you want mic or digital transmit audio, receive audio, footswitch/PTT, CW Key to follow your attention to the IF radio of your choice as you change bands

http://www.dlliao.com/tech/ © 2001 by Stefan v. Baltz, DL1IAO_CW added by W3SZ Electromechanical Device Bandswitching With Two IF Radios, No Computer

Disadvantages:

No IF Radio / Transverter Bandswitching

No CAT Control, thus No Radio-Logger Synchronization

Electromechanical Device Bandswitching

- Arduino (or other MCU) can be used with code like that shown for IF Radio / transverter bandswitching
 - If you are running SO1V with N1MM this is easy
 - Just tell the Arduino which IF radio gets the mic / CW key / PTT / receive audio connection for each band
 - Get band information from N1MM UDP output

Arduino N1MM Ethernet Device Bandswitch SO1V

- Runs on an Uno
- Reads UDP "Radio" packets from N1MM
- N1MM Setup as per BBB Ethernet IF/Transverter device
- .ino file is here:
 - http://w3sz.com/ArduinoDeviceBandSwitcherEthernet.in
 o
- .pdf file is here:
 - http://w3sz.com/ArduinoDeviceBandSwitcherEthernet.pd
 f
- Code Handout pages 61-64

Device Bandswitching SO1V mode N1MM

```
void SetBand(String commandOut)
if (commandOut == "50" || commandOut == "14" || commandOut == "22" || commandOut == "43")
  //This is low band radio, set relays off to connect to this radio
digitalWrite (MicPin, LOW);
digitalWrite(TxDigitalAudioPin, LOW);
digitalWrite(CW KeyPin, LOW);
digitalWrite(LeftFootswitchPin, LOW);
digitalWrite(RightFootswitchPin, LOW);
digitalWrite(ReceiveAudioOnePin, LOW);
digitalWrite(ReceiveAudioTwoPin, LOW);
 else if (commandOut == "90" || commandOut == "12" || commandOut == "23" ||
commandOut == "34" || commandOut == "57" || commandOut == "10" || commandOut == "24")
  //This is microwave radio, set telays to ON to connect to this radio
digitalWrite (MicPin, HIGH);
digitalWrite(TxDigitalAudioPin, HIGH);
digitalWrite(CW KeyPin, HIGH);
digitalWrite(LeftFootswitchPin, HIGH);
                                                                     Code Handout pp63-64
digitalWrite(RightFootswitchPin, HIGH);
digitalWrite(ReceiveAudioOnePin, HIGH);
digitalWrite(ReceiveAudioTwoPin, HIGH);
 }
```

Device Bandswitching Complications

- Who runs SO1V these days??
- Don't always WANT mic / CW key / PTT / receive audio to "follow the radio"
 - e.g when on 432 for liaison for 10 GHz contact
 - Want mic on 432, CW key on 10 GHz
 - Want receive audio on BOTH radios
 - Want separate PTT / footswitch for each radio
 - But other times, e.g when running the bands without need for liaison, DO want the mic / CW key / PTT / receive audio to "follow the radio"
- So need more system complexity in order to accommodate both situations

- Before I developed my "everything in software" approach, I used electromechanical device switching of mic, 3 receive audio channels, 2 foot switches, CW key between 7 IF radios (one radio each for 50, 144, 222, 432, 903, and 1296 MHz and one shared by 2-24 GHz)
- I used two Parallax Propeller MCUs controlled by 2 USB ports

• 3 boards for receive audio switching, 4 boards for mic, 2 footswitches, CW key switching

Device Manager

- Details of OS X code are here:
 - http://www.nitehawk.com/w3sz/osxhpsdrserver.htm
- Propeller Spin code is here:
 - http://w3sz.com/AudioController.spin
 - http://w3sz.com/RadioManager.spin
- PCB and SCH files are here:
 - http://w3sz.com/RadioControlBoardNew.pcb
 - http://w3sz.com/RadioAudioControlBoard.pcb
 - http://w3sz.com/RadioControlBoardNew.sch
 - http://w3sz.com/RadioAudioControlBoard.sch

Device Bandswitching "Typical" Station's Capability:

- CAT Control
- SO2R
- N1MM or WriteLog or DXLabs with Win 7 or newer
- 2 IF Radios
 - 50, 144, 222, 432 MHz
 - 902 MHz and up

Device Bandswitching "Typical" Capability \rightarrow SO2R Box

- Legacy LPT Devices
 - Top Ten Devices "DX Doubler"
 - Array Solutions "SO2R Master"
- USB-Serial Port Devices
 - MicroHAM MK2R+ \$939
 - OTRSP compatible devices like YCCC SO2RBox
 - SO2RDuino by Paul Young, K1XM
 - http://ncjweb.com/features/julaug10feat.pdf
 - http://ncjweb.com/bonus-content/NCJJulAugBonus.ZIP
 - Depending on your junkbox, cost could be \$5

USB-Serial SO2R Boxes:

- Provide Mic, CW Key, PTT, Receive Audio switching between Radio 1 and Radio 2
- Provide Band data for IF Radio / Transverter bandswitching
- Simultaneous transmit on 2 radios is not always possible
 - e.g. MK2R+ allows dual transmission if NOT in SO2R mode, but NOT if in SO2R mode
- Simple SO2RDuino provides for only 1 PTT signal
 - also does NOT separate out control of Mic, CW Key, PTT

Super MEGA SO2RDuino

- Extension of SO2RDuino using Mega 2560 R3 to give:
 - Two PTT inputs
 - Allows both Radio 1 and Radio2 to transmit at same time using PTT A for one and PTT B for the other
 - Ability to indepently set status to either "Follow Focus Radio" or "Manual Assignment to Radio 1 or Radio 2" for each of:
 - Receive Audio (Follows Rx Focus radio)
 - PTT A (Follows Tx Focus radio)
 - PTT B (Follows Tx Focus radio)
 - Mic (Follows Tx Focus radio)
 - CW Key (Follows Tx Focus radio)
 - IF Radio / Transverter bandswitching for up to 16 bands. Each Radio has 16 band outputs, which are set up using "Antennas" Configuration page in N1MM as previously described.

Super MEGA SO2RDuino

- If you are confused about "Entry Focus", "Tx Focus", "Rx Focus" go here:
 - http://n1mm.hamdocs.com/tiki-index.php?page=
 SO2R+-+Single+Operator+Two+Radio+Operation&h
 ighlight=SO2R#The_SO2R_Dots_LEDs
- Basically:
 - GREEN DOT = Rx Focus = Entry Focus
 - RED DOT = Tx Focus
 - DOES <u>NOT</u> ALWAYS = Rx Focus or Entry Focus

The Original SO2RDuino by Paul Young K1XM

Concept Illustration of Super MEGA SO2RDuino

Concept Illustration of Super MEGA SO2RDuino

Super MEGA SO2RDuino

- Code is based on Paul Young's SO2RDuino code at: http://ncjweb.com/bonus-content/NCJJulAugBonus.Z IP
- Super MEGA SO2RDuino code is at:

http://w3sz.x10.mx/SO2RDuino_ToINO_New_Mega. ino

http://w3sz.x10.mx/SuperMEGASO2RDuino.pdf

- Code is 30 pages long so we won't review it here
- It uses the concepts and code presented in the other projects that ARE discussed in detail here today
 - The code is well documented

Super MEGA SO2RDuino

- Two videos follow, which also help cement the concepts of what we are doing with N1MM/SO2RBox combination
- First video discusses and demonstrates function of box
- Second video demonstrates manual setting of radio-CW key association

E:\StationAutomation\PackRatsMiniTalk\5_SHORT_Super_MEGA_SO2 RDuinoWithN1MM.optimizedSHORTforCONFERENCE.wmv

E:\StationAutomation\PackRatsMiniTalk\6_SuperMegaWithN1MM _ManualCWSetRadio.wmv

Is the MEGA Fast Enough? No Interrupts Used – 18 wpm

Is the MEGA Fast Enough? No Interrupts Used – 18 wpm

5	SIGLENT	Stop	M 50.0ms E	elay 0.00µs		f < 1Hz
						Sa 1.00MSa/s Curr 700kpts
						Edge <mark>CH1</mark>
2						L_0.00mV
						1 DC1M 100 mV/div -304.00 mV
						2 DC1M 100 mV/div 170.00 mV
				- HSB Flach Dir		
D						
	SAVE/RECALL					
	New 🖕		Delete	Rename 🖕	Press To Save	

Is the MEGA Fast Enough? No Interrupts Used – 42 wpm

Station Automation Coding

 Very Simple: Got Some Input
 Did Something With It
 Produced Some Output

Station Automation Coding

- 1) Included libraries containing external functions
- 2) Defined variables and constants
- 3) Setup ()
 - Define and initialize GPIO pins
 - Defined, started, serial port, Ethernet port
- 4) Loop()
 - Received input from ports
 - Parsed / processed data to extract desired information
 - Used information derived from data to bandswitch using GPIO pins
- 5) From within Loop(), called other functions() as needed

